
ABSTRACT
Among three fundamental characteristics of contemporary 
windowing systems—opacity, rectangularity, and hierar-
chy—the first two have been broken to give way to more 
expressive UI designs while hierarchy remains unchallenged. 
We propose a new kind of UI element called links that breaks 
the hierarchy of graphical user interfaces for the purpose of 
showing relationships between disparate UI elements. We 
present a small user study indicating that links are desirable 
visual elements that are currently under-used in graphical 
user interfaces. We propose a taxonomy of how links can be 
used, present a toolkit for representing and displaying links 
in Java/Swing, and show how links can enhance existing ap-
plications’ UIs.

INTRODUCTION
Windowed user interfaces currently dominate if not monopo-
lize all existing software applications. Users, UI program-
mers, and even UI researchers have come to accept that an 
application’s graphical user interface is a tree of large and 
small, nested, mostly rectangular and opaque windows, 
overlapping and hierarchically clipped. These characteristics 
of contemporary windowing systems—rectangularity, opac-
ity, and hierarchy—made sense back in the early days of 
graphical user interfaces when they bought us performance 
optimizations that allowed for smooth user interactions. Now, 
after many years of hardware advances, these optimizations 
become less and less justified against the demand for expres-
siveness in UI design.
There is mounting evidence that the traditional windowing 
paradigm, consisting of opaque, rectangular windows with 
impenetrable borders, is too confining. UIST has seen con-
tinuing research interest in translucency (e.g., [1], [6], and 
[8] in 2003) as researchers recognize the human ability to 
parse layered visual content. Non-rectangular UIs also have 
arrived in the form of pie menus and media players. A recent 
piece of work [11] explores a circular radar-like interface for 
showing notifications.
Support for translucency and non-rectangularity has made its 
way into some windowing systems and is gaining traction.   
We have witnessed the introduction of translucent windows in 

popular media players and instant messaging clients. However, 
hierarchy remains mostly untouched. It is this third character-
istic of the traditional windowing paradigm that we wish to 
address. This paper explores the concept and usage of links—a 
new kind of UI element that seemingly crosses from one part 
of the hierarchical window tree to another part, expressing 
connections between disparate elements on screen.

We start by redesigning an existing UI to show new pos-
sibilities in UI designs when rigid windows are not used. In 
particular, the redesign illustrates the replacement of selec-
tion synchronization by the use of links crossing from one 
window to another.
Next, we show the results of a user study pilot in which test 
subjects drew links abundantly when told to design posters 
but hardly any when designing GUIs for the same purpose. 
This is evidence for the desirability of links and the difficulty 
in which they can be programmed in existing UI systems.
We propose a taxonomy of links to understand the nature of 
links. We then build a prototypical library of link UI elements 
that can be integrated into Java/Swing applications. We use 
this library to demonstrate a live version of the aforementioned 
redesign as well as an enhancement to an existing application 
through the use of links.
Finally, we discuss related work and future work.

SNAP: A REDESIGN EXAMPLE
In order to illustrate how the aforementioned three fundamen-
tal characteristics of the traditional windowing paradigm can 
be usefully broken, we consider SNAP, a recently developed 
research user interface [5]. This research system called SNAP 
provides users with a UI mechanism for coordinating several 
visualizations that have been rendered from queries to a re-
lational database.
Figure 1 shows a sample UI composed using SNAP. A user 
loads each of the five windows with data and specifies the 
formats for rendering them (e.g., plot, map, table, outline). 
Then, the selections of the windows are tied together using the 
Snap buttons so that selecting a state in the top left window 
highlights the corresponding data point in the plot, underlines 
the state’s code in the map, and displays that state’s county 
data in the table and the treemap on the right.
We chose SNAP as an example because of its attempt to let 
users smash together several visualizations and explore re-
lationships among them. However, the “smashing” is not as 
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In addition to using links, we have also made a few other 
modifications to enhance the UI:
• Most borders are removed. This change allows the plot to be 
pushed into the map (crossing over its invisible rectangular 
boundary) without obscuring parts of the map or creating 
a busy look due to intersecting borders. The two pieces of 
information are fitted together more snugly. This fitting ef-
fectively communicates the relationship between the map 
and the plot in Figure 2. In contrast, two labels “States” and 
“Counties” had to be added to the screenshot in Figure 1 to 
avoid confusion: the plot could have been of county data 
rather than of state data.
• The column header labels in the table are inclined so that the 
columns can be pushed closer together. The ability to incline 
text, difficult in most UI toolkits, adds flexibility to the design 
of visualizations. Furthermore, note that the bounding boxes 
of the column header labels intersect one another. As a result, 
providing a custom header label widget to a standard table 
widget is not enough—the table widget needs to be able to 
nudge the header labels closer than a conventional rectilinear 
layout would allow.

USER STUDY
These interesting areas of the design space remain largely 
unexplored because of limitations imposed by UI toolkits. 
In order to get a sense for how the creativity of UI program-
mers is affected by their perception of what’s easy or hard to 
implement, we conducted a small study with 10 computer 
science graduate students in our lab. Each student was asked 

Figure 1. Original SNAP user interface from [North], reprinted with permission from authors

effective as it could have been if windowing toolkits were less 
confining. Figure 2 shows a rough redesign of the UI in Figure 
1. We focus primarily on the information being explored rather 
than on the UI mechanisms used to specify the visualizations. 
Note the following differences in Figure 2:
• We use lines to connect the selected state name (e.g., Mary-
land) to the corresponding state on the map as well as the data 
point on the plot. We believe that this use of connecting lines, 
or “links,” shows correspondence more effectively than just 
highlighting corresponding items in the different visualiza-
tions in synchrony. Using most existing UI toolkits, it is next 
to impossible to draw lines stretching from within one window 
to another window. Even if it is possible, the resulting links 
are not first-class widgets and cannot be easily manipulated 
programmatically.
• Furthermore, since links are used to indicate selection, visual 
variables formerly used for highlighting are now freed up 
for other purposes. For example, highlighting can be used to 
indicate data points on the plot corresponding to other states 
in the same region as the selected state. This is useful for an 
overview of how the states in a region are distributed.
• We also use a link to connect the selected state to the county 
data table. This connection shows not correspondence but 
elaboration. Nevertheless, since the link attaches to the border 
of the whole table, users should understand that elaboration is 
being communicated. There is no longer a need to suffix every 
county name with “MD” as in the original design.

States

Counties



Figure 2. A redesign of the SNAP user interface (income per capita from http://www.iowaworkforce.org/trends/percapita.
html; population from http://www.census.gov/population/projections/state/stpjpop.txt)

to design an information visualization, either in poster form 
or computer form, for the following scenario:

“You have recently gone on a trip to China. During 
your trip, you visited five cities and stayed a differ-
ent number of days in each city, and you also made 
new friends at each city. [Here appeared the list of 
cities, durations of stay, and pictures of one or two 
friends made in each city.] As an assignment in your 
Chinese language class, you are to make a [poster 
or computer program] to recount your trip to your 
classmates, which shows (1) your route through 
China, (2) the friends you met, and (3) the fact that 
you spent a lot more time in Hangzhou than in any 
other city. Using paper and pencil, roughly sketch 
out what your [poster or computer program] would 
look like. Assume that you have access to a map of 
China and photos of your friends in any form you’d 
find convenient, and that the hypothetical class as-
signment is due in one week.”

We chose this scenario because its solution requires displaying 
several different visualizations—geographical, chronological, 
and pictorial—that are closely related. The Hangzhou require-
ment was particularly intended to motivate creative ways 
of showing the relationships between visualizations (like 
Minard’s famous visualization of Napoleon’s Russia campaign 
[9]). We wanted to see whether there were any systematic 
differences in how these relationships would be shown in a 

paper display (a poster) compared to an interactive display 
(a computer program).
For 4 of the 10 designers (randomly chosen), the requested vi-
sualization was a poster; the remaining 6 designers were asked 
to design a computer program. All 10 designers had designed 
and implemented at least one substantial user interface, and 
had experience with a wide range of UI tools (chiefly Java 
Swing, HTML, SWT, and Visual Basic). Designers in the 
computer-program condition were told that they could imagine 
designing for any UI programming environment that they felt 
comfortable with. Designers were given as much time as they 
wanted to produce a design; in the end, all designers took less 
than 30 minutes. Three designers (2 in the poster group and 1 
in the computer group) iterated their designs, throwing away 
a partial design and presenting a second sketch instead. The 
other designers created only one design.
The final designs were varied, but some general conclusions 
can be drawn. First, lines connecting different visualizations 
were commonly found in poster designs (3 out of 4) but rarely 
in computer designs (only 1 out of 6). Lines were used to con-
nect cities on the map to friends’ photos (in 2 designs), and 
cities to points on a time line (2 designs).  Several solutions 
used two kinds of lines, one kind to show the route around the 
map (a chronology within the geographic visualization), and 
another kind to make links between visualizations.
Second, most of the poster designs (the same 3 out of 4) were 
unified in the sense demonstrated by Figure 2: different visu-
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Figure 4. One of the computer program designs from the 
user study

Figure 3. One of the poster designs from the user study

alizations freely overlapped without respecting rectangular 
boundaries.  In most of the computer designs (5 out of 6), by 
contrast, the visualizations were walled off from each other 
by strongly drawn rectangular boundaries. In fact, half the 
computer designs (3 out of 6) put different visualizations on 
different pages, giving up any hope of unifying them visu-
ally.
Certainly, there are many differences between the poster 
medium and the computer medium that might influence 
how designers perceive the solution space.  For example, a 
typical poster has more display area than a typical computer 
screen, while a typical computer program is more interactive 
and more dynamic (i.e., displaying changing information). 
But it’s worth noting that effective design idioms that were 
perfectly natural in poster designs—such as connecting lines 
and nonrectangular information elements—largely failed to 
appear in the computer designs.

TAXONOMY OF LINKS
Our user study’s results indicate fre-
quent use of links on paper but not 
in computer programs. We attribute 
this difference to the difficulty with 
which links can be programmed in 
current UI systems. In order to un-
derstand how links can be adapted 
to visualizations on the computer, 
we first explore the general diversity 
of links in information visualizations 
by proposing a taxonomy for line and 
link usage (Table 1). At the top level, 
we distinguish between the use of 
lines for showing associations and 
for showing information applicable 
globally to a visualization, such as 
the scale of a map. Lines in associa-
tive use are what we have termed 
“links” previously. Links are the 

topic of our discussion here.
We propose two main categories of links: links that elaborate 
on the information being visualized by adding more informa-
tion which is not previously evident from the visualization; 
and links that emphasize visual connections already evident 
from the visualization.

Elaborative Links
There are several types of elaborative links: correspondence 
links,  equivalence links, succession links, grouping links, and 
links for showing general relationships. Note that grouping 
links are an exception in that they may not have ends termi-
nating at the objects being grouped.

Emphasis Links
When the connections between objects are already presented 
but can be enhanced visually, we turn to emphasis links.  
Alignments of several objects are usually indicated by dashed 
lines. Distances between objects can be indicated with a ruler 
stretching from one object to the other. An arrow shows the 
direction from one object to another without touching the 
destination.
Note that a link can connect more than two objects to show 
an n-ary relationship. A link can also connect to another link: 
Figure 5 shows such a link being used to show the mutual 
friends of two persons A and B.
We also consider links attached to only one object: these act 
like tooltips in annotating the objects being pointed to.

A

B

Figure 5. Link showing mutual friends of A and B



DESIGN ISSUES FOR RENDERING LINKS
Our initial taxonomy for lines, and links, helps us determine 
the types of links we will explore through actual implemen-
tation. In this section, we dive only into elaborative links as 
emphasis links are generally more useful in graphics oriented 
programs rather than in generic information visualizations. 
We will discuss various challenges to be addressed in order to 
render links amid the conventional windowing paradigm.
When a link is introduced into the windowing paradigm, 
different parts of the link are bound to different nodes in the 
window hierarchy. Since these different nodes lie at different 
levels in the hierarchy, the link crosses from one part of the 
hierarchy to another part. Some parts might be obscured by 
other windows and some parts might be scrolled out of a view 
port. The challenge lies in how to present a link when only 
some of its parts are visible. We present two new techniques, 
puncturing and elasticity, for handling these problems.
Every link (with the exception of grouping links) consists of 
one or more stems (e.g. straight or curved lines) and two or 
more ends (e.g., arrowheads). Usually, a stem within a link can 
be partially obscured without detrimental effect to the value 
of the link. However, when an end of a link is obscured, the 
value of the link is largely lost. For this reason we shall first 
consider link end obscurity.

Link End Obscurity  Consider the z-ordering of the windows 
A, B, and C shown in Figure 6a. We considered three choices 
for showing the link from x to y: not displaying the link at all; 
clipping the link by the area of B so that the link appears below 
B (Figure 6b); or ghosting the obscured area of A and the part 
of the link so that B appears translucent (Figure 6c).
The first option is not desirable because the link would flicker 
on and off as B is dragged around the space, sometimes 
obscuring the link and sometimes not.  The second option 
is consistent with the usual clipping policy when the link is 
considered to be below B itself.
For the third option, translucency may be used in combination 
with a selection of the details to be rendered. At one end of 
the spectrum, all details of A and the link show through B. At 
the other end, only a skeleton of A (e.g., borders of the large 
components of A) and the link show through. This option 
may not be desirable if the user is currently focusing solely 
on interacting with B. We chose to implement the second op-
tion in Magpie due to its simplicity. The third option will be 
explored in the future.
More interesting is the z-ordering in which B intervenes be-
tween A and C. We also have three choices: not displaying the 

Associative showing association between different information items

Elaborative the association is not already present in the visualization and is elaborated by the lines

Correspondence links between two or more views of a single logical object (e.g., three views of a 
state are linked together in our redesign example)

Equivalence links connecting elements having common or similar attributes, e.g., a contour line 
indicating points of equal elevation

Succession e.g., arrows that show transitions through a flowchart or connect points in a time 
series

Grouping contour enclosing grouped items

General
Relationship

links between an object or a relationship to several related objects (e.g., a state is 
linked to its county data in our redesign example)

Emphasis the association is already in the visualization and is emphasized by the lines

Alignment e.g., a dashed line on a form designer shows that a UI component being dragged is 
“snapped” to align with another UI component

Length e.g., a line indicating some distance between two visual elements

Direction e.g., an arrow pointing from one visual element in the direction of another visual 
element

Non-associative showing information applicable globally to the entire visualization

Length e.g., the scale ruler on a map

Direction e.g., the compass on a map

Table 1. Taxonomy of Lines



link at all; clipping the obscured end; or 
showing that the link punctures through 
B to get to A.
The fi rst option is not desirable for the 
same reason as in the previous z-ordering. 
The second option requires the link to be 
clipped by the borders of the obscuring 
windows  ( Figure 7 ). While this choice 
seems logical, it suffers from a serious 
problem: if B is taller, as shown in  Figure 
8 a, then the link does not intersect any of 
B’s four borders and it is not clear where 
the link should be clipped. We would have 
the very same problem if we only have 
the two windows A and C and C itself 
obscures the link end on A ( Figure 8 b).
The third option imagines the link as 
belonging to the third dimension, curving 
up from C and diving down into B, punc-
turing through it to get to A ( Figure 9 a). 
The part of the link below B is ghosted 
out when projected onto the screen ( Fig-
ure 9 b).
Link Stem Obscurity  We treat the stems 
of a link to be at the same z-order level 
as the highest UI element to which the 
link is attached. This means that any UI 
element above that highest element will 
be used to crop the rendering of the link. 
This is already seen in   Figure 6 b where 
B crops the link xy.
Link End Out-of-View  When a link end 
becomes invisible to the user not by obscurity but because it 
is scrolled out of view, we also face the same problem of how 
to present the link.
If all ends of a link are cropped through a common view port 
and some of them are scrolled out of view, we have two op-
tions: not displaying the link at all; or clipping the link by the 
same view port ( Figure 10 ).
When not all ends of a link are cropped by a common view 
port, we encounter a more interesting challenge.  Figure 11  
shows that we can crop the stem of the link by a border of 
the view port that hides the out-of-view end. However, this 
is not possible if the stem does not intersect any border of the 
view port, as shown in  Figure 12 . In order to solve this prob-
lem, we propose an “elastic band” view of links: the straight 
stem of the link behaves like an elastic band and bends at the 

upper left corner of the view port, as il-
lustrated in  Figure 13 a and then rendered 
in  Figure 13 b.
Link Stem Out-of-View  So far we have 
only focused on the visibility of link ends. 
There are occasions when stem invisibility 
creates confusion for the user and renders 
a link less useful. Consider the scenario in 
 Figure 14 a in which two links are cropped 
by a view port. It is impossible to judge 
whether the link starting from a ends at c
or d; and since all link ends are very close 
to the upper edge of the scrollable space, 

it is not possible to scroll upward to reveal more of the link 
stems. (Since links are additions to the visualization, the UI 
component responsible for rendering that visualization is not 
aware of the links itself and cannot make room for them.) In 
this scenario, even though all link ends are viewed through 
the same view port, it is benefi cial not to crop the link stems 
by that view port, as shown in  Figure 14 b.
Another reasonable choice would be to fl ip the stems upside-
down, but when the links are scrolled to the bottom, the stems 
need to be fl ipped again. Providing graceful, non-disruptive 
re-orientation of the link stems is necessary for a smooth user 
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in which the stem and the ends disappears 
from the view port. It is useful for keeping 
the stem visible as long as possible and 
still manages to hide it away after it is no 
longer useful to be seen (i.e., its ends are 
entirely out of view).

Discussion  Throughout our exploration of the design issues 
for showing links, we have hinted upon many ways in which 
links seemingly break the windowing hierarchy ever present 
in today’s graphical user interfaces. A link can attach to ends 
that belong in different subtrees of the windowing hierarchy. 
A link can protrude out of a view port and defy the view port’s 
clipping. These characteristics of links that made them useful 
pull them out of the 2½D of the windowing paradigm and 
demand us to build a 3D or 2¾ model for links.
In presenting links, we have made use of a few uncommon 
UI mechanisms such as puncturing and elastic band, which 
incidentally accentuate the 2½D-ness of the UI by exposing 
relative z-orders of windows and hinting at the layering of a 
scrollable space with respect to its view port. For example, 
even if the two windows B and C in Figure 9b are not over-
lapping, the user can still tell that C is above B because of 
the puncturing effect.
Conventional UI elements are constrained along the z-order 
by their parent elements: as an element’s parent is pulled up 
or down the z-order axis, the element itself is pulled along. 
However, the element is free to determine its X and Y coor-
dinates. The opposite is true for links: a link is pulled along 
the X and Y axes as its ends move about the screen. However, 
the link is free to determine its z-order(s). It becomes apparent 
that links demand layout management not for the two dimen-
sions along the surface of the screen, but for the ½ dimen-
sion along the z-order axis, just as conventional UI elements 
demand layer management for the X and Y dimensions but 
not for the z-order.

experience. For that purpose, we propose a physical model 
of link stems in view ports illustrated in Figure 15. The link 
stem in the figure is considered to protrude through the view 
port from the scrollable space. The link stem attaches flexibly 
to its two ends on the scrollable space; this allows it to bend 
when it budges against the top border of the view port as the 
two ends are scrolled upward. Eventually, the stem bends to 
be almost horizontal and then disappears from under the view 
port. This physical model yields continuity and coordination 

Figure 10. Cropping the link stem 
when all ends of a link are scrolled 
out of view

(a)

(b)

Figure 11. Cropping the link stem 
when some ends of a link are 
scrolled out of view

Figure 12. Where to crop the link 
stem when some ends of a link are 
scrolled out of view
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Figure 13. An elastic band link
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Figure 14. Stem invisibility creates confusion
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Figure 15. Physical model for link stems protruding from view ports: the link stem is constrained by the view port’s upper 
edge as the view port is scrolled downward



• edu.mit.csail.magpie.IAnchor: An anchor is something 
that can be attached to. There are two kinds of anchors: point 
anchors and shape anchors. For example, a plot can provide 
point anchors corresponding to the centers of its data points 
and a map can provide shape anchors corresponding to the 
boundaries of its regions. When an anchor is moved or 
reshaped, it fires event to its listeners and its listeners (e.g., 
links) move appropriately.

• edu.mit.csail.magpie.IConnectable: A connectable is 
a UI element that offers zero or more anchors and, hence, 
can be connected to.  Magpie includes connectable wrappers 
for the several Swing widgets: JLabel, JList, and JTable.  
The label wrapper exposes a shape anchor for the label’s 
bounding box, while the list and table wrappers expose shape 
anchors for the items and selections in the list or table.  The 
custom plot and map widgets in the SNAP example (Figure 
16) also implement IConnectable to provide their own 
custom anchors.

• edu.mit.csail.magpie.IAnchorGroup: Anchors are of-
fered in groups. A connectable JList offers a group of shape 
anchors corresponding to the boundaries of its selected 
items. Each anchor group has a name, e.g., “edu.mit.csail.
magpie.selection”. Anchor groups can be retrieved from a 
connectable. An anchor group fires events whenever anchors 
are added to or  removed from it.

• edu.mit.csail.magpie.ILink is the interface for all links. 
We have implemented several link classes, each taking a dif-
ferent number of anchors and rendering the link differently.  
StraightLineBinaryLink connects exactly two anchors 
with a straight line.  StraightLineTertiaryLink connects 
three anchors (as shown in Figure 16).  GroupingLink draws 
a contour around one or more anchors.  Finally, TooltipLink 
takes exactly one anchor and renders a tooltip connected to 
that anchor.

• edu.mit.csail.magpie.ILinkEnd: Link classes are re-
sponsible for rendering link stems only and they make use 
of ILinkEnd classes to render link ends. This design choice 
allows customization of link ends for each type of link. 
Magpie currently offers circular link ends (seen attached to 
the state list in Figure 16), arrow heads (which point at the 
map and plot in Figure 16), and bare ends (seen in Figure 
17).

APPLICATIONS
Figure 16 shows the SNAP redesign demo using the Magpie 
toolkit. This demo preserves the default windowing look and 
feel in order to illustrate the improvement that links bring 
about even in the absence of other alterations proposed in 
the mockup in Figure 2. Multiple selections are now useful 
because the user can tell exactly which selection in the plot 
corresponds to which selection in the list—this is not possible 
if simple highlighting were used.
We also explored adding Magpie links to an existing Java 
application, LAPIS [3]. LAPIS is a text editor that uses 
multiple selections for pattern matching, repetitive editing, 
and find-and-replace. Magpie links were used to address two 
known usability problems in the LAPIS user interface. First, 
LAPIS augments the scrollbar with marks showing where 
selections are located in the document, so that the user can 

These design issues of links also shine new light on the use 
of opacity. Previously, a UI element (e.g., a media player 
window) can volunteer to be translucent. With links, obscured 
content pushes up through other elements to show itself. 
Layout management along the z-order concerns not only 
ordering overlapping elements in depth, but also adjusting 
their translucency to accommodate how desirable elements 
are to be seen.

MAGPIE: A TOOLKIT OF LINK UI ELEMENTS
Based on our exploration of various issues on rendering links, 
we have designed and implemented a toolkit called Magpie for 
drawing links between different Java/Swing components.

Implementation Technologies
We chose to implement Magpie in Java/Swing as its light-
weight components all paint on a common canvas and it is 
easier to overlay links on them than it is on operating system-
native UI widgets. Swing is built on top of the Java 2D Graph-
ics toolkit which offers sophisticated rendering capabilities 
including alpha composition.
However, at the top level of all Java/Swing UIs are javax.
swing.JFrames—operating system-native windows that are 
independent of one another and do not paint on a common 
canvas. Consequently, we limit the toolkit to render links 
spanning only within individual JFrames, not across them. 
This is a limitation that we will attempt to remove in future 
versions of the library. Nevertheless, it is still valuable to be 
able to use such links on, say, JInternalFrames that can be 
moved about by the user.
Magpie was developed in parallel with our SNAP redesign 
demo. As such, it was designed to be integrated with an 
application that uses a JDesktopPane. One must be able to 
incorporate Magpie with minimal alteration to the original 
program. For this reason, links cannot be Swing components 
belonging in the same component hierarchy of the original 
program, as the program’s code might make assumptions about 
its component hierarchy and may be broken due to the intru-
sion of links. Furthermore, links can assume arbitrary z-order 
depending on the z-order of their ends and a link can even have 
several z-orders. Our solution renders links on the JGlassPane 
of the containing JFrame and performs all the necessary clip-
ping to give the illusion of appropriate z-orders.
We needed to augment the painting of the JGlassPane of the 
containing JFrame, but in Swing, components are rendered 
by calls to their paint() methods and this mechanism disal-
lows augmenting. Consequently, we had to wrap any existing 
JGlassPane with our own. This is a somewhat disruptive 
intrusion to client applications, but since JGlassPanes are not 
used often, it might be an acceptable solution.
Rendering links ourselves has a few drawbacks. Links are not 
first class components and much work will be needed to make 
them behave like first class components, responding to user 
inputs. A lot of clipping must also be done that can otherwise 
be handled by the underlying windowing system.

Magpie API
Following are the interfaces of the Magpie library:



Figure 16. SNAP Redesign demo using the Magpie link toolkit

find them more easily when scrolling around. In user studies, 
however, new users rarely notice the scrollbar marks or guess 
their purpose. Magpie links drawn from each scrollbar mark 
to the corresponding selection in the text makes this connec-
tion abundantly clear. (In Figure 17, these links point from 
the scrollbar to the left, into the text pane.)
Second, we used Magpie links to improve a new feature, 
cluster-based find & replace [4], which rearranges pattern 
matches into clusters based on similarity in order to reduce 
the chance of replacement errors. Clustered matches are 
shown in a separate pane (on the right in Figure 17), using 
small snapshots of context around each match.  User studies 
showed that for some tasks, this snapshot provided too little 
information about a match for the user to decide whether it 
needed to be replaced. Unfortunately, it was hard for the user 
to find the corresponding match in the document. Magpie 
links make this simple: each selected match in the cluster 
pane is linked to a scrollbar mark, which in turn is linked to 
a selection in the text pane.
Adding these links to LAPIS required less than 100 lines 
of new code, which mainly exposes anchors representing 
scrollbar marks and text selections, and then creates links 

between them. Linking to cluster matches was easier, because 
the cluster pane used a JTree widget already, so anchors for 
the selections were immediately available after substituting 
Magpie’s JTree wrapper.

RELATED WORK
One of the seven tasks of information visualization is to relate 
[7]. There are two ways to show associations: synchronizing 
visual attributes (e.g., color, shape, blinking) and drawing 
links. The former has been leveraged abundantly. The latter 
has also been used in numerous work on information visual-
ization. But in most cases where links are used, links are part 
of the information being visualized, e.g., they are the relation-
ships in a graph. On occasions, links are used to augment the 
presented information. For example, the Influence Explorer 
[10] shows histograms of several parameters collected from 
several experimental subjects and uses links to correspond 
data points in different histograms collected from a common 
subject. Augmentation has always taken place inside the same 
canvas (e.g., a graph view) as the information being visualized. 
There is one exception, LinkWinds [2], in which links are 
drawn between different visualizations. However, LinkWinds 



Figure 17. LAPIS with links

limits its links to point only between 
the linked windows containing the 
visualizations, not between individual 
information objects like in our work.

DISCUSSION AND FUTURE WORK
When used within individual visualiza-
tions, links are parts of the information 
being visualized—they show relation-
ships between data objects within the 
information. In contrast, links between 
separate visualizations show relation-
ships between the visualizations. For 
example, in our SNAP redesign ex-
ample, the list item “Maryland”, the 
map label “MD”, and the plot data point 
circle are essentially the same logical 
object but are presented differently 
in different visualizations. Hence, the 
links do not show relations between 
different data objects but rather reveal 
the fact that the three visualizations 
are cooperating to show three different 
views of the same object.
More generally, links can be used to 
expose to the user the internal wirings 
of the UI itself. In this manner, a UI can indicate how informa-
tion flows through it, e.g., how checking a particular checkbox 
would change the content of a textbox not so nearby; what 
object a menu command would act upon.
As presented so far, links are rendered but not directly ma-
nipulable by the user. One can imagine allowing the user to 
reconnect links to request modifications to the information 
being visualized or to the UI’s internal wirings. The semantics 
and mechanism for reconnecting links need to be explored.
Like any UI mechanism, links have their niche and their 
limitations. In particular, it is obvious that links do not scale 
well:  Figure 16 would be incomprehensible if all states were 
selected at once. However, links are still valuable even with 
their lack of scalability. When and how links should be used 
are topics for future work that demand in-depth usability 
evaluations.
With regards to implementation, we will attempt to incorporate 
links in a generic constraint-based UI management system 
because it seems logical to use constraints for tracking link 
ends. In addition, we will also explore the idea of z-order 
layout management.

CONCLUSION
In this paper, we propose abstracting links into UI elements 
that can be used to show connections between other UI ele-
ments rather than just within underlying information being 
presented. In particular, one can show synchronized selections 
as demonstrated in our SNAP redesign demo, or correspon-
dence between different UI elements as in the LAPIS/Magpie 
integration.
Through this concept of links, we hint at the need to re-ex-
amine the three fundamental characteristics of the windowing 
paradigm in order to explore deviations from those charac-

teristics for the purpose of increasing expressiveness in UI 
design.
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