
ABSTRACT
Among three fundamental characteristics of contemporary
windowing systems—opacity, rectangularity, and hierar-
chy—the first two have been broken to give way to more
expressive UI designs while hierarchy remains unchallenged.
We propose a new kind of UI element called links that breaks
the hierarchy of graphical user interfaces for the purpose of
showing relationships between disparate UI elements. We
present a small user study indicating that links are desirable
visual elements that are currently under-used in graphical
user interfaces. We propose a taxonomy of how links can be
used, present a toolkit for representing and displaying links
in Java/Swing, and show how links can enhance existing ap-
plications’ UIs.

INTRODUCTION
Windowed user interfaces currently dominate if not monopo-
lize all existing software applications. Users, UI program-
mers, and even UI researchers have come to accept that an
application’s graphical user interface is a tree of large and
small, nested, mostly rectangular and opaque windows,
overlapping and hierarchically clipped. These characteristics
of contemporary windowing systems—rectangularity, opac-
ity, and hierarchy—made sense back in the early days of
graphical user interfaces when they bought us performance
optimizations that allowed for smooth user interactions. Now,
after many years of hardware advances, these optimizations
become less and less justified against the demand for expres-
siveness in UI design.
There is mounting evidence that the traditional windowing
paradigm, consisting of opaque, rectangular windows with
impenetrable borders, is too confining. UIST has seen con-
tinuing research interest in translucency (e.g., [1], [6], and
[8] in 2003) as researchers recognize the human ability to
parse layered visual content. Non-rectangular UIs also have
arrived in the form of pie menus and media players. A recent
piece of work [11] explores a circular radar-like interface for
showing notifications.
Support for translucency and non-rectangularity has made its
way into some windowing systems and is gaining traction.
We have witnessed the introduction of translucent windows in

popular media players and instant messaging clients. However,
hierarchy remains mostly untouched. It is this third character-
istic of the traditional windowing paradigm that we wish to
address. This paper explores the concept and usage of links—a
new kind of UI element that seemingly crosses from one part
of the hierarchical window tree to another part, expressing
connections between disparate elements on screen.

We start by redesigning an existing UI to show new pos-
sibilities in UI designs when rigid windows are not used. In
particular, the redesign illustrates the replacement of selec-
tion synchronization by the use of links crossing from one
window to another.
Next, we show the results of a user study pilot in which test
subjects drew links abundantly when told to design posters
but hardly any when designing GUIs for the same purpose.
This is evidence for the desirability of links and the difficulty
in which they can be programmed in existing UI systems.
We propose a taxonomy of links to understand the nature of
links. We then build a prototypical library of link UI elements
that can be integrated into Java/Swing applications. We use
this library to demonstrate a live version of the aforementioned
redesign as well as an enhancement to an existing application
through the use of links.
Finally, we discuss related work and future work.

SNAP: A REDESIGN EXAMPLE
In order to illustrate how the aforementioned three fundamen-
tal characteristics of the traditional windowing paradigm can
be usefully broken, we consider SNAP, a recently developed
research user interface [5]. This research system called SNAP
provides users with a UI mechanism for coordinating several
visualizations that have been rendered from queries to a re-
lational database.
Figure 1 shows a sample UI composed using SNAP. A user
loads each of the five windows with data and specifies the
formats for rendering them (e.g., plot, map, table, outline).
Then, the selections of the windows are tied together using the
Snap buttons so that selecting a state in the top left window
highlights the corresponding data point in the plot, underlines
the state’s code in the map, and displays that state’s county
data in the table and the treemap on the right.
We chose SNAP as an example because of its attempt to let
users smash together several visualizations and explore re-
lationships among them. However, the “smashing” is not as

Breaking the Window Hierarchy to Visualize
UI Interconnections

David F. Huynh, Robert C. Miller, David R. Karger
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA, USA
{dfhuynh, rcm, karger}@csail.mit.edu

In addition to using links, we have also made a few other
modifications to enhance the UI:
• Most borders are removed. This change allows the plot to be
pushed into the map (crossing over its invisible rectangular
boundary) without obscuring parts of the map or creating
a busy look due to intersecting borders. The two pieces of
information are fitted together more snugly. This fitting ef-
fectively communicates the relationship between the map
and the plot in Figure 2. In contrast, two labels “States” and
“Counties” had to be added to the screenshot in Figure 1 to
avoid confusion: the plot could have been of county data
rather than of state data.
• The column header labels in the table are inclined so that the
columns can be pushed closer together. The ability to incline
text, difficult in most UI toolkits, adds flexibility to the design
of visualizations. Furthermore, note that the bounding boxes
of the column header labels intersect one another. As a result,
providing a custom header label widget to a standard table
widget is not enough—the table widget needs to be able to
nudge the header labels closer than a conventional rectilinear
layout would allow.

USER STUDY
These interesting areas of the design space remain largely
unexplored because of limitations imposed by UI toolkits.
In order to get a sense for how the creativity of UI program-
mers is affected by their perception of what’s easy or hard to
implement, we conducted a small study with 10 computer
science graduate students in our lab. Each student was asked

Figure 1. Original SNAP user interface from [North], reprinted with permission from authors

effective as it could have been if windowing toolkits were less
confining. Figure 2 shows a rough redesign of the UI in Figure
1. We focus primarily on the information being explored rather
than on the UI mechanisms used to specify the visualizations.
Note the following differences in Figure 2:
• We use lines to connect the selected state name (e.g., Mary-
land) to the corresponding state on the map as well as the data
point on the plot. We believe that this use of connecting lines,
or “links,” shows correspondence more effectively than just
highlighting corresponding items in the different visualiza-
tions in synchrony. Using most existing UI toolkits, it is next
to impossible to draw lines stretching from within one window
to another window. Even if it is possible, the resulting links
are not first-class widgets and cannot be easily manipulated
programmatically.
• Furthermore, since links are used to indicate selection, visual
variables formerly used for highlighting are now freed up
for other purposes. For example, highlighting can be used to
indicate data points on the plot corresponding to other states
in the same region as the selected state. This is useful for an
overview of how the states in a region are distributed.
• We also use a link to connect the selected state to the county
data table. This connection shows not correspondence but
elaboration. Nevertheless, since the link attaches to the border
of the whole table, users should understand that elaboration is
being communicated. There is no longer a need to suffix every
county name with “MD” as in the original design.

States

Counties

Figure 2. A redesign of the SNAP user interface (income per capita from http://www.iowaworkforce.org/trends/percapita.
html; population from http://www.census.gov/population/projections/state/stpjpop.txt)

to design an information visualization, either in poster form
or computer form, for the following scenario:

“You have recently gone on a trip to China. During
your trip, you visited five cities and stayed a differ-
ent number of days in each city, and you also made
new friends at each city. [Here appeared the list of
cities, durations of stay, and pictures of one or two
friends made in each city.] As an assignment in your
Chinese language class, you are to make a [poster
or computer program] to recount your trip to your
classmates, which shows (1) your route through
China, (2) the friends you met, and (3) the fact that
you spent a lot more time in Hangzhou than in any
other city. Using paper and pencil, roughly sketch
out what your [poster or computer program] would
look like. Assume that you have access to a map of
China and photos of your friends in any form you’d
find convenient, and that the hypothetical class as-
signment is due in one week.”

We chose this scenario because its solution requires displaying
several different visualizations—geographical, chronological,
and pictorial—that are closely related. The Hangzhou require-
ment was particularly intended to motivate creative ways
of showing the relationships between visualizations (like
Minard’s famous visualization of Napoleon’s Russia campaign
[9]). We wanted to see whether there were any systematic
differences in how these relationships would be shown in a

paper display (a poster) compared to an interactive display
(a computer program).
For 4 of the 10 designers (randomly chosen), the requested vi-
sualization was a poster; the remaining 6 designers were asked
to design a computer program. All 10 designers had designed
and implemented at least one substantial user interface, and
had experience with a wide range of UI tools (chiefly Java
Swing, HTML, SWT, and Visual Basic). Designers in the
computer-program condition were told that they could imagine
designing for any UI programming environment that they felt
comfortable with. Designers were given as much time as they
wanted to produce a design; in the end, all designers took less
than 30 minutes. Three designers (2 in the poster group and 1
in the computer group) iterated their designs, throwing away
a partial design and presenting a second sketch instead. The
other designers created only one design.
The final designs were varied, but some general conclusions
can be drawn. First, lines connecting different visualizations
were commonly found in poster designs (3 out of 4) but rarely
in computer designs (only 1 out of 6). Lines were used to con-
nect cities on the map to friends’ photos (in 2 designs), and
cities to points on a time line (2 designs). Several solutions
used two kinds of lines, one kind to show the route around the
map (a chronology within the geographic visualization), and
another kind to make links between visualizations.
Second, most of the poster designs (the same 3 out of 4) were
unified in the sense demonstrated by Figure 2: different visu-

MI

$15,000

$20,000

$30,000

$25,000

10m 20m 30m

Population in 1995

In
co

m
e

pe
r c

ap
ita

Map of the United States of America

Plot of States Data

States

Baltimore
Calvert
Caroline
Carroll
Cecil
Charles
Dorchester
Frederick
Garrett
Harford
Howard
Kent
Mongomery
Prince George's
Queen Anne's

715,360
64,598
29,072

140,203
78,174

111,633
30,170

175,399
29,461

205,367
219,125

18,736
809,569
767,413

36,992

692,134
51,372
27,035

123,372
71,347

101,154
30,236

150,208
28,138

182,132
187,328

17,842
757,027
728,553

33,953

655,615
34,638
23,143
96,356
60,430
72,751
30,623

114,792
26,490

145,930
118,572
16,695

579,053
665,071

25,508

268,280
16,986

9,983
42,248
24,725
32,950
12,117
52,570
10,110
63,193
68,337

6,702
282,228
258,011
12,489

Population 1995

Population 1990

Population 1980

Housing Units 1990

Counties

MD

RI

WA

OR

ID

MT

WY

ND

SD

MN
WI

MI

IL IN OH
PA

NJ

DE

NY

CT

MA

NH
VT

WV
VA

KY
NC

SC
TN

GAAL

FL

MS

LA

AR

MOKS

OK

TX

NE IA

NM

CO

AZ

UT

NV

CA

AK

HI

NEW ENGLAND

MIDDLE
ATLANTIC

SOUTH

MIDWEST

SOUTHWEST

WEST

ME

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
DC
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

Figure 4. One of the computer program designs from the
user study

Figure 3. One of the poster designs from the user study

alizations freely overlapped without respecting rectangular
boundaries. In most of the computer designs (5 out of 6), by
contrast, the visualizations were walled off from each other
by strongly drawn rectangular boundaries. In fact, half the
computer designs (3 out of 6) put different visualizations on
different pages, giving up any hope of unifying them visu-
ally.
Certainly, there are many differences between the poster
medium and the computer medium that might influence
how designers perceive the solution space. For example, a
typical poster has more display area than a typical computer
screen, while a typical computer program is more interactive
and more dynamic (i.e., displaying changing information).
But it’s worth noting that effective design idioms that were
perfectly natural in poster designs—such as connecting lines
and nonrectangular information elements—largely failed to
appear in the computer designs.

TAXONOMY OF LINKS
Our user study’s results indicate fre-
quent use of links on paper but not
in computer programs. We attribute
this difference to the difficulty with
which links can be programmed in
current UI systems. In order to un-
derstand how links can be adapted
to visualizations on the computer,
we first explore the general diversity
of links in information visualizations
by proposing a taxonomy for line and
link usage (Table 1). At the top level,
we distinguish between the use of
lines for showing associations and
for showing information applicable
globally to a visualization, such as
the scale of a map. Lines in associa-
tive use are what we have termed
“links” previously. Links are the

topic of our discussion here.
We propose two main categories of links: links that elaborate
on the information being visualized by adding more informa-
tion which is not previously evident from the visualization;
and links that emphasize visual connections already evident
from the visualization.

Elaborative Links
There are several types of elaborative links: correspondence
links, equivalence links, succession links, grouping links, and
links for showing general relationships. Note that grouping
links are an exception in that they may not have ends termi-
nating at the objects being grouped.

Emphasis Links
When the connections between objects are already presented
but can be enhanced visually, we turn to emphasis links.
Alignments of several objects are usually indicated by dashed
lines. Distances between objects can be indicated with a ruler
stretching from one object to the other. An arrow shows the
direction from one object to another without touching the
destination.
Note that a link can connect more than two objects to show
an n-ary relationship. A link can also connect to another link:
Figure 5 shows such a link being used to show the mutual
friends of two persons A and B.
We also consider links attached to only one object: these act
like tooltips in annotating the objects being pointed to.

A

B

Figure 5. Link showing mutual friends of A and B

DESIGN ISSUES FOR RENDERING LINKS
Our initial taxonomy for lines, and links, helps us determine
the types of links we will explore through actual implemen-
tation. In this section, we dive only into elaborative links as
emphasis links are generally more useful in graphics oriented
programs rather than in generic information visualizations.
We will discuss various challenges to be addressed in order to
render links amid the conventional windowing paradigm.
When a link is introduced into the windowing paradigm,
different parts of the link are bound to different nodes in the
window hierarchy. Since these different nodes lie at different
levels in the hierarchy, the link crosses from one part of the
hierarchy to another part. Some parts might be obscured by
other windows and some parts might be scrolled out of a view
port. The challenge lies in how to present a link when only
some of its parts are visible. We present two new techniques,
puncturing and elasticity, for handling these problems.
Every link (with the exception of grouping links) consists of
one or more stems (e.g. straight or curved lines) and two or
more ends (e.g., arrowheads). Usually, a stem within a link can
be partially obscured without detrimental effect to the value
of the link. However, when an end of a link is obscured, the
value of the link is largely lost. For this reason we shall first
consider link end obscurity.

Link End Obscurity Consider the z-ordering of the windows
A, B, and C shown in Figure 6a. We considered three choices
for showing the link from x to y: not displaying the link at all;
clipping the link by the area of B so that the link appears below
B (Figure 6b); or ghosting the obscured area of A and the part
of the link so that B appears translucent (Figure 6c).
The first option is not desirable because the link would flicker
on and off as B is dragged around the space, sometimes
obscuring the link and sometimes not. The second option
is consistent with the usual clipping policy when the link is
considered to be below B itself.
For the third option, translucency may be used in combination
with a selection of the details to be rendered. At one end of
the spectrum, all details of A and the link show through B. At
the other end, only a skeleton of A (e.g., borders of the large
components of A) and the link show through. This option
may not be desirable if the user is currently focusing solely
on interacting with B. We chose to implement the second op-
tion in Magpie due to its simplicity. The third option will be
explored in the future.
More interesting is the z-ordering in which B intervenes be-
tween A and C. We also have three choices: not displaying the

Associative showing association between different information items

Elaborative the association is not already present in the visualization and is elaborated by the lines

Correspondence links between two or more views of a single logical object (e.g., three views of a
state are linked together in our redesign example)

Equivalence links connecting elements having common or similar attributes, e.g., a contour line
indicating points of equal elevation

Succession e.g., arrows that show transitions through a flowchart or connect points in a time
series

Grouping contour enclosing grouped items

General
Relationship

links between an object or a relationship to several related objects (e.g., a state is
linked to its county data in our redesign example)

Emphasis the association is already in the visualization and is emphasized by the lines

Alignment e.g., a dashed line on a form designer shows that a UI component being dragged is
“snapped” to align with another UI component

Length e.g., a line indicating some distance between two visual elements

Direction e.g., an arrow pointing from one visual element in the direction of another visual
element

Non-associative showing information applicable globally to the entire visualization

Length e.g., the scale ruler on a map

Direction e.g., the compass on a map

Table 1. Taxonomy of Lines

link at all; clipping the obscured end; or
showing that the link punctures through
B to get to A.
The fi rst option is not desirable for the
same reason as in the previous z-ordering.
The second option requires the link to be
clipped by the borders of the obscuring
windows (Figure 7). While this choice
seems logical, it suffers from a serious
problem: if B is taller, as shown in Figure
8 a, then the link does not intersect any of
B’s four borders and it is not clear where
the link should be clipped. We would have
the very same problem if we only have
the two windows A and C and C itself
obscures the link end on A (Figure 8 b).
The third option imagines the link as
belonging to the third dimension, curving
up from C and diving down into B, punc-
turing through it to get to A (Figure 9 a).
The part of the link below B is ghosted
out when projected onto the screen (Fig-
ure 9 b).
Link Stem Obscurity We treat the stems
of a link to be at the same z-order level
as the highest UI element to which the
link is attached. This means that any UI
element above that highest element will
be used to crop the rendering of the link.
This is already seen in Figure 6 b where
B crops the link xy.
Link End Out-of-View When a link end
becomes invisible to the user not by obscurity but because it
is scrolled out of view, we also face the same problem of how
to present the link.
If all ends of a link are cropped through a common view port
and some of them are scrolled out of view, we have two op-
tions: not displaying the link at all; or clipping the link by the
same view port (Figure 10).
When not all ends of a link are cropped by a common view
port, we encounter a more interesting challenge. Figure 11
shows that we can crop the stem of the link by a border of
the view port that hides the out-of-view end. However, this
is not possible if the stem does not intersect any border of the
view port, as shown in Figure 12 . In order to solve this prob-
lem, we propose an “elastic band” view of links: the straight
stem of the link behaves like an elastic band and bends at the

upper left corner of the view port, as il-
lustrated in Figure 13 a and then rendered
in Figure 13 b.
Link Stem Out-of-View So far we have
only focused on the visibility of link ends.
There are occasions when stem invisibility
creates confusion for the user and renders
a link less useful. Consider the scenario in
 Figure 14 a in which two links are cropped
by a view port. It is impossible to judge
whether the link starting from a ends at c
or d; and since all link ends are very close
to the upper edge of the scrollable space,

it is not possible to scroll upward to reveal more of the link
stems. (Since links are additions to the visualization, the UI
component responsible for rendering that visualization is not
aware of the links itself and cannot make room for them.) In
this scenario, even though all link ends are viewed through
the same view port, it is benefi cial not to crop the link stems
by that view port, as shown in Figure 14 b.
Another reasonable choice would be to fl ip the stems upside-
down, but when the links are scrolled to the bottom, the stems
need to be fl ipped again. Providing graceful, non-disruptive
re-orientation of the link stems is necessary for a smooth user

A

B
C

x

y

y

xA

B

C

(a)

(b)

 Figure 7. Showing link end obscurity
due to intervening sibling by clipping

xA

B

C

y(b)

x

A

B
C

y

Screen

(a)

 Figure 9. Showing link end obscurity
by puncturing

y

xA

B

C

?
y

xA
C

?

(a) (b)

 Figure 8. Link end clipping dilemma in presence of intervening sibling

A

B

C
x

y

yyy

xA

B

C

y

xA

B

C

(a)

(b)

(c)

 Figure 6. Showing link end obscurity
through clipping and ghosting

in which the stem and the ends disappears
from the view port. It is useful for keeping
the stem visible as long as possible and
still manages to hide it away after it is no
longer useful to be seen (i.e., its ends are
entirely out of view).

Discussion Throughout our exploration of the design issues
for showing links, we have hinted upon many ways in which
links seemingly break the windowing hierarchy ever present
in today’s graphical user interfaces. A link can attach to ends
that belong in different subtrees of the windowing hierarchy.
A link can protrude out of a view port and defy the view port’s
clipping. These characteristics of links that made them useful
pull them out of the 2½D of the windowing paradigm and
demand us to build a 3D or 2¾ model for links.
In presenting links, we have made use of a few uncommon
UI mechanisms such as puncturing and elastic band, which
incidentally accentuate the 2½D-ness of the UI by exposing
relative z-orders of windows and hinting at the layering of a
scrollable space with respect to its view port. For example,
even if the two windows B and C in Figure 9b are not over-
lapping, the user can still tell that C is above B because of
the puncturing effect.
Conventional UI elements are constrained along the z-order
by their parent elements: as an element’s parent is pulled up
or down the z-order axis, the element itself is pulled along.
However, the element is free to determine its X and Y coor-
dinates. The opposite is true for links: a link is pulled along
the X and Y axes as its ends move about the screen. However,
the link is free to determine its z-order(s). It becomes apparent
that links demand layout management not for the two dimen-
sions along the surface of the screen, but for the ½ dimen-
sion along the z-order axis, just as conventional UI elements
demand layer management for the X and Y dimensions but
not for the z-order.

experience. For that purpose, we propose a physical model
of link stems in view ports illustrated in Figure 15. The link
stem in the figure is considered to protrude through the view
port from the scrollable space. The link stem attaches flexibly
to its two ends on the scrollable space; this allows it to bend
when it budges against the top border of the view port as the
two ends are scrolled upward. Eventually, the stem bends to
be almost horizontal and then disappears from under the view
port. This physical model yields continuity and coordination

Figure 10. Cropping the link stem
when all ends of a link are scrolled
out of view

(a)

(b)

Figure 11. Cropping the link stem
when some ends of a link are
scrolled out of view

Figure 12. Where to crop the link
stem when some ends of a link are
scrolled out of view

(a)

(b)

Figure 13. An elastic band link

a b c d a b c d

(a) (b)
Figure 14. Stem invisibility creates confusion

a
b

a
b

a
b

Figure 15. Physical model for link stems protruding from view ports: the link stem is constrained by the view port’s upper
edge as the view port is scrolled downward

• edu.mit.csail.magpie.IAnchor: An anchor is something
that can be attached to. There are two kinds of anchors: point
anchors and shape anchors. For example, a plot can provide
point anchors corresponding to the centers of its data points
and a map can provide shape anchors corresponding to the
boundaries of its regions. When an anchor is moved or
reshaped, it fires event to its listeners and its listeners (e.g.,
links) move appropriately.

• edu.mit.csail.magpie.IConnectable: A connectable is
a UI element that offers zero or more anchors and, hence,
can be connected to. Magpie includes connectable wrappers
for the several Swing widgets: JLabel, JList, and JTable.
The label wrapper exposes a shape anchor for the label’s
bounding box, while the list and table wrappers expose shape
anchors for the items and selections in the list or table. The
custom plot and map widgets in the SNAP example (Figure
16) also implement IConnectable to provide their own
custom anchors.

• edu.mit.csail.magpie.IAnchorGroup: Anchors are of-
fered in groups. A connectable JList offers a group of shape
anchors corresponding to the boundaries of its selected
items. Each anchor group has a name, e.g., “edu.mit.csail.
magpie.selection”. Anchor groups can be retrieved from a
connectable. An anchor group fires events whenever anchors
are added to or removed from it.

• edu.mit.csail.magpie.ILink is the interface for all links.
We have implemented several link classes, each taking a dif-
ferent number of anchors and rendering the link differently.
StraightLineBinaryLink connects exactly two anchors
with a straight line. StraightLineTertiaryLink connects
three anchors (as shown in Figure 16). GroupingLink draws
a contour around one or more anchors. Finally, TooltipLink
takes exactly one anchor and renders a tooltip connected to
that anchor.

• edu.mit.csail.magpie.ILinkEnd: Link classes are re-
sponsible for rendering link stems only and they make use
of ILinkEnd classes to render link ends. This design choice
allows customization of link ends for each type of link.
Magpie currently offers circular link ends (seen attached to
the state list in Figure 16), arrow heads (which point at the
map and plot in Figure 16), and bare ends (seen in Figure
17).

APPLICATIONS
Figure 16 shows the SNAP redesign demo using the Magpie
toolkit. This demo preserves the default windowing look and
feel in order to illustrate the improvement that links bring
about even in the absence of other alterations proposed in
the mockup in Figure 2. Multiple selections are now useful
because the user can tell exactly which selection in the plot
corresponds to which selection in the list—this is not possible
if simple highlighting were used.
We also explored adding Magpie links to an existing Java
application, LAPIS [3]. LAPIS is a text editor that uses
multiple selections for pattern matching, repetitive editing,
and find-and-replace. Magpie links were used to address two
known usability problems in the LAPIS user interface. First,
LAPIS augments the scrollbar with marks showing where
selections are located in the document, so that the user can

These design issues of links also shine new light on the use
of opacity. Previously, a UI element (e.g., a media player
window) can volunteer to be translucent. With links, obscured
content pushes up through other elements to show itself.
Layout management along the z-order concerns not only
ordering overlapping elements in depth, but also adjusting
their translucency to accommodate how desirable elements
are to be seen.

MAGPIE: A TOOLKIT OF LINK UI ELEMENTS
Based on our exploration of various issues on rendering links,
we have designed and implemented a toolkit called Magpie for
drawing links between different Java/Swing components.

Implementation Technologies
We chose to implement Magpie in Java/Swing as its light-
weight components all paint on a common canvas and it is
easier to overlay links on them than it is on operating system-
native UI widgets. Swing is built on top of the Java 2D Graph-
ics toolkit which offers sophisticated rendering capabilities
including alpha composition.
However, at the top level of all Java/Swing UIs are javax.
swing.JFrames—operating system-native windows that are
independent of one another and do not paint on a common
canvas. Consequently, we limit the toolkit to render links
spanning only within individual JFrames, not across them.
This is a limitation that we will attempt to remove in future
versions of the library. Nevertheless, it is still valuable to be
able to use such links on, say, JInternalFrames that can be
moved about by the user.
Magpie was developed in parallel with our SNAP redesign
demo. As such, it was designed to be integrated with an
application that uses a JDesktopPane. One must be able to
incorporate Magpie with minimal alteration to the original
program. For this reason, links cannot be Swing components
belonging in the same component hierarchy of the original
program, as the program’s code might make assumptions about
its component hierarchy and may be broken due to the intru-
sion of links. Furthermore, links can assume arbitrary z-order
depending on the z-order of their ends and a link can even have
several z-orders. Our solution renders links on the JGlassPane
of the containing JFrame and performs all the necessary clip-
ping to give the illusion of appropriate z-orders.
We needed to augment the painting of the JGlassPane of the
containing JFrame, but in Swing, components are rendered
by calls to their paint() methods and this mechanism disal-
lows augmenting. Consequently, we had to wrap any existing
JGlassPane with our own. This is a somewhat disruptive
intrusion to client applications, but since JGlassPanes are not
used often, it might be an acceptable solution.
Rendering links ourselves has a few drawbacks. Links are not
first class components and much work will be needed to make
them behave like first class components, responding to user
inputs. A lot of clipping must also be done that can otherwise
be handled by the underlying windowing system.

Magpie API
Following are the interfaces of the Magpie library:

Figure 16. SNAP Redesign demo using the Magpie link toolkit

find them more easily when scrolling around. In user studies,
however, new users rarely notice the scrollbar marks or guess
their purpose. Magpie links drawn from each scrollbar mark
to the corresponding selection in the text makes this connec-
tion abundantly clear. (In Figure 17, these links point from
the scrollbar to the left, into the text pane.)
Second, we used Magpie links to improve a new feature,
cluster-based find & replace [4], which rearranges pattern
matches into clusters based on similarity in order to reduce
the chance of replacement errors. Clustered matches are
shown in a separate pane (on the right in Figure 17), using
small snapshots of context around each match. User studies
showed that for some tasks, this snapshot provided too little
information about a match for the user to decide whether it
needed to be replaced. Unfortunately, it was hard for the user
to find the corresponding match in the document. Magpie
links make this simple: each selected match in the cluster
pane is linked to a scrollbar mark, which in turn is linked to
a selection in the text pane.
Adding these links to LAPIS required less than 100 lines
of new code, which mainly exposes anchors representing
scrollbar marks and text selections, and then creates links

between them. Linking to cluster matches was easier, because
the cluster pane used a JTree widget already, so anchors for
the selections were immediately available after substituting
Magpie’s JTree wrapper.

RELATED WORK
One of the seven tasks of information visualization is to relate
[7]. There are two ways to show associations: synchronizing
visual attributes (e.g., color, shape, blinking) and drawing
links. The former has been leveraged abundantly. The latter
has also been used in numerous work on information visual-
ization. But in most cases where links are used, links are part
of the information being visualized, e.g., they are the relation-
ships in a graph. On occasions, links are used to augment the
presented information. For example, the Influence Explorer
[10] shows histograms of several parameters collected from
several experimental subjects and uses links to correspond
data points in different histograms collected from a common
subject. Augmentation has always taken place inside the same
canvas (e.g., a graph view) as the information being visualized.
There is one exception, LinkWinds [2], in which links are
drawn between different visualizations. However, LinkWinds

Figure 17. LAPIS with links

limits its links to point only between
the linked windows containing the
visualizations, not between individual
information objects like in our work.

DISCUSSION AND FUTURE WORK
When used within individual visualiza-
tions, links are parts of the information
being visualized—they show relation-
ships between data objects within the
information. In contrast, links between
separate visualizations show relation-
ships between the visualizations. For
example, in our SNAP redesign ex-
ample, the list item “Maryland”, the
map label “MD”, and the plot data point
circle are essentially the same logical
object but are presented differently
in different visualizations. Hence, the
links do not show relations between
different data objects but rather reveal
the fact that the three visualizations
are cooperating to show three different
views of the same object.
More generally, links can be used to
expose to the user the internal wirings
of the UI itself. In this manner, a UI can indicate how informa-
tion flows through it, e.g., how checking a particular checkbox
would change the content of a textbox not so nearby; what
object a menu command would act upon.
As presented so far, links are rendered but not directly ma-
nipulable by the user. One can imagine allowing the user to
reconnect links to request modifications to the information
being visualized or to the UI’s internal wirings. The semantics
and mechanism for reconnecting links need to be explored.
Like any UI mechanism, links have their niche and their
limitations. In particular, it is obvious that links do not scale
well: Figure 16 would be incomprehensible if all states were
selected at once. However, links are still valuable even with
their lack of scalability. When and how links should be used
are topics for future work that demand in-depth usability
evaluations.
With regards to implementation, we will attempt to incorporate
links in a generic constraint-based UI management system
because it seems logical to use constraints for tracking link
ends. In addition, we will also explore the idea of z-order
layout management.

CONCLUSION
In this paper, we propose abstracting links into UI elements
that can be used to show connections between other UI ele-
ments rather than just within underlying information being
presented. In particular, one can show synchronized selections
as demonstrated in our SNAP redesign demo, or correspon-
dence between different UI elements as in the LAPIS/Magpie
integration.
Through this concept of links, we hint at the need to re-ex-
amine the three fundamental characteristics of the windowing
paradigm in order to explore deviations from those charac-

teristics for the purpose of increasing expressiveness in UI
design.

REFERENCES
[1] Ishak, E. W. and Feiner, S. K. “Free-Space Transparency: Ex-

posing Hidden Content Through Unimportant Screen Space.”
In Conference Supplement of UIST 2003, p.75–76.

[2] Jacobson, A., Berkin, A., and Orton, M., “LinkWinds: Inter-
active Scientific Data Analysis and Visualization.” Communi-
cations of the ACM, 37(4), p.43–52, April 1994.

[3] Miller, R.C. and Myers, B.A. “Multiple Selections in Smart
Text Editing.” In Proc. IUI 2002, p.103–110.

[4] Miller, R.C, and Marshall, A.M. “Cluster-Based Find &
Replace.” In Proc. CHI 2004, to appear.

[5] North, C. and Shneiderman, B.” Snap-together visualization:
a user interface for coordinating visualizations via relational
schemata.” In Proc. AVI 2000, p.128–135.

[6] Paley, W. Bradford. “Designing Better Transparent Overlays
by Applying Illustration Techniques and Vision Findings.” In
Conference Supplement of UIST 2003, p.57–58.

[7] Shneiderman, B. “The eyes have it: a task by data type
taxonomy for information visualizations.” In Proc. IEEE
Symposium on Visual Languages, p.336–343, 1996.

[8] Stotts, D., Smith, J. M., and Jen, D. “The Vis-a-Vid Trans-
parent Video Facetop.” In Conference Supplement of UIST
2003, p.57–58.

[9] Tufte, E.R. “The Visual Display of Quantitative Informa-
tion.” 2nd ed. Graphics Press: Cheshire, CT, 2001.

[10] Tweedie, L., Spence, B., Dawkes, H., and Su, H. “The
Influence Explorer (video) - a tool for design.” In Confer-
ence companion on Human factors in computing systems,
p.390–391, 1996, Vancouver, Canada.

[11] Van Dantzich, M., Robbins, D., Horvitz, E. & Czerwinski,
M. “Scope: Providing awareness of multiple notifications at a
glance.” In Proc. AVI 2002.

